LinkedIn Writer Migration Guide¶
Complete documentation of the LinkedIn Writer migration from Streamlit to FastAPI, including architectural changes, feature enhancements, and integration details.
Migration Overview¶
The LinkedIn Writer has been successfully migrated from a Streamlit-based application to a robust FastAPI service, providing comprehensive content generation capabilities with enhanced performance, scalability, and integration options.
Migration Background¶
Before Migration¶
Original Implementation:
- Framework: Streamlit web application
- Location: ToBeMigrated/ai_writers/linkedin_writer/
- Architecture: Monolithic application with embedded UI logic
- Features: Text-based content generation only
- Integration: Standalone application with limited API access
After Migration¶
New Implementation:
- Framework: FastAPI microservice
- Location: Integrated into main ALwrity backend (backend/)
- Architecture: Modular API service with clean separation of concerns
- Features: Enhanced content generation with multimedia support
- Integration: Fully integrated with ALwrity ecosystem
Architectural Changes¶
Before: Monolithic Streamlit App¶
graph TD
A[Streamlit App] --> B[UI Components]
A --> C[Business Logic]
A --> D[AI Integration]
B --> E[User Interface]
C --> F[Content Generation]
D --> G[Gemini API]
After: Modular FastAPI Service¶
graph TD
A[FastAPI Service] --> B[Models Layer]
A --> C[Services Layer]
A --> D[Routers Layer]
A --> E[Middleware]
B --> F[Pydantic Models]
C --> G[Business Logic]
C --> H[AI Integration]
D --> I[API Endpoints]
E --> J[Monitoring]
G --> K[Content Generation]
G --> L[Multimedia Processing]
H --> M[Gemini Provider]
H --> N[WAN 2.5]
H --> O[Hunyuan Avatar]
Feature Enhancements¶
Enhanced Content Types¶
1. Traditional Content (Migrated)¶
- LinkedIn Posts: Professional updates, thought leadership, career insights
- LinkedIn Articles: Long-form content with SEO optimization
- Comment Responses: Context-aware professional responses
2. New Multimedia Content (Added)¶
Video Posts¶
Technical Implementation:
# backend/services/linkedin_service.py
class LinkedInVideoService:
async def generate_video_post(
self,
topic: str,
script: str,
avatar_id: Optional[str] = None,
voice_id: Optional[str] = None,
style: str = "professional"
) -> VideoPostResult:
# Generate video script if not provided
if not script:
script = await self._generate_script(topic, style)
# Generate audio narration
audio_result = await self._generate_audio(script, voice_id)
# Generate video with WAN 2.5
if avatar_id:
# Use Hunyuan Avatar for talking head video
video_result = await self._generate_avatar_video(
script, avatar_id, audio_result
)
else:
# Use WAN 2.5 for text-to-video
video_result = await self._generate_text_to_video(
script, audio_result, style
)
return VideoPostResult(
video_url=video_result.url,
thumbnail_url=video_result.thumbnail,
duration=video_result.duration,
script=script
)
API Endpoint:
Request Body:
{
"topic": "AI Transformation in Healthcare",
"industry": "Healthcare",
"style": "professional",
"duration": "60_seconds",
"aspect_ratio": "16:9",
"include_avatar": true,
"voice_type": "professional_female",
"background_music": "corporate_inspirational"
}
Avatar Videos¶
Features: - Personal branding with consistent avatar - Professional video messages - Thought leadership content - Company announcements with spokesperson
Implementation:
# Avatar video generation
avatar_video = await hunyuan_avatar.generate(
script=script,
avatar_id=user.avatar_id,
voice_id=user.voice_id,
background="professional_office",
gestures="confident_presenter"
)
Carousel Posts with Images¶
Enhanced Implementation:
class CarouselGenerator:
async def generate_carousel(
self,
topic: str,
slides: int = 5,
style: str = "professional",
images_per_slide: int = 1
) -> CarouselResult:
# Generate slide content
slides_content = await self._generate_slide_content(topic, slides)
# Generate images for each slide
for i, slide in enumerate(slides_content):
if images_per_slide > 0:
images = await self._generate_slide_images(
slide.content, style, images_per_slide
)
slide.images = images
# Generate cover slide
cover = await self._generate_cover_slide(topic, style)
return CarouselResult(
slides=[cover] + slides_content,
total_slides=len(slides_content) + 1
)
Performance Improvements¶
Before Migration¶
- Synchronous processing
- Limited concurrency
- Basic error handling
- No monitoring or analytics
After Migration¶
- Async/Await Support: Better concurrency and performance
- Comprehensive Monitoring: Request/response tracking, error logging
- Health Checks: Service availability monitoring
- Rate Limiting: API protection and fair usage
- Caching: Response caching for repeated requests
Integration Enhancements¶
Backend Integration¶
# Integrated with existing ALwrity services
class LinkedInIntegratedService:
def __init__(self):
self.gemini_provider = GeminiProvider()
self.wan25_service = WAN25Service()
self.hunyuan_avatar = HunyuanAvatarService()
self.asset_library = AssetLibraryService()
self.persona_service = PersonaService()
Database Integration¶
# User preferences and content history
class LinkedInUserPreferences(Base):
__tablename__ = "linkedin_user_preferences"
user_id = Column(String, primary_key=True)
default_tone = Column(String, default="professional")
industry_focus = Column(String)
avatar_id = Column(String, ForeignKey("personas.id"))
voice_id = Column(String, ForeignKey("voices.id"))
brand_colors = Column(JSON)
content_templates = Column(JSON)
API Reference¶
Core Endpoints¶
Health Check¶
Response:
{
"status": "healthy",
"timestamp": "2024-01-15T10:30:00Z",
"version": "2.0.0",
"services": {
"gemini": "operational",
"wan25": "operational",
"hunyuan_avatar": "operational",
"asset_library": "operational"
}
}
Generate Post¶
Enhanced Request Body:
{
"topic": "Digital Transformation in Healthcare",
"industry": "Healthcare",
"content_type": "post",
"tone": "professional",
"audience": "healthcare_executives",
"include_hashtags": true,
"include_emoji": false,
"max_length": 3000,
"research_enabled": true,
"multimedia": {
"include_image": true,
"image_style": "professional",
"generate_video": false
}
}
Generate Article¶
Enhanced Features: - SEO optimization for LinkedIn algorithm - Automatic image placement suggestions - Reading time estimation - Table of contents generation - Call-to-action optimization
Generate Video Post¶
New Endpoint for Video Content:
{
"topic": "Future of AI in Professional Services",
"script": "optional_custom_script",
"duration": "45_seconds",
"style": "thought_leadership",
"avatar": {
"use_personal": true,
"style": "professional"
},
"voice": {
"type": "professional_male",
"speed": "normal",
"emphasis": "confident"
},
"background": {
"type": "office",
"music": "inspirational_corporate"
},
"branding": {
"include_logo": true,
"end_screen_cta": "Connect with me"
}
}
Generate Carousel¶
Enhanced with Multimedia:
{
"topic": "Digital Marketing Trends 2024",
"slides": 6,
"style": "professional",
"cover_slide": {
"title": "2024 Digital Marketing Trends",
"subtitle": "What to watch for",
"background_image": true
},
"content_slides": [
{"focus": "AI_Content", "visual_style": "futuristic"},
{"focus": "Video_Dominance", "visual_style": "engaging"},
{"focus": "Personalization", "visual_style": "data_driven"}
],
"cta_slide": {
"action": "Download full report",
"link": "https://example.com/report"
}
}
Advanced Endpoints¶
Batch Generation¶
Request Body:
{
"requests": [
{
"type": "post",
"topic": "AI in Finance",
"industry": "Finance"
},
{
"type": "article",
"topic": "Digital Transformation",
"industry": "Technology"
},
{
"type": "video_post",
"topic": "Future of Work",
"duration": "60_seconds"
}
],
"options": {
"parallel_processing": true,
"priority": "high",
"notification_webhook": "https://app.example.com/webhooks/linkedin"
}
}
User Preferences Management¶
GET /api/linkedin/user/preferences
POST /api/linkedin/user/preferences
PUT /api/linkedin/user/preferences
Preferences Structure:
{
"content_defaults": {
"tone": "professional",
"industry": "Technology",
"include_hashtags": true,
"max_length": 2800
},
"multimedia_defaults": {
"video_style": "corporate",
"avatar_preference": "professional_female",
"voice_preference": "warm_confident",
"background_music": "inspirational"
},
"brand_settings": {
"colors": ["#1a73e8", "#34a853"],
"logo_url": "https://cdn.example.com/logo.png",
"brand_voice": "innovative_trustworthy"
}
}
Multimedia Integration¶
Video Generation Pipeline¶
graph TD
A[Content Request] --> B[Script Generation]
B --> C[Voice Synthesis]
C --> D[Video Generation]
D --> E[Post-Processing]
E --> F[Optimization]
F --> G[Asset Storage]
B --> H[Gemini AI]
C --> I[MiniMax Voice]
D --> J{WAN 2.5 or Hunyuan}
J --> K[Text-to-Video]
J --> L[Avatar Video]
E --> M[Resolution/Format]
F --> N[LinkedIn Specs]
G --> O[Asset Library]
Asset Library Integration¶
All generated content is automatically stored in the Asset Library:
# Automatic asset storage
async def store_generated_content(
content: GeneratedContent,
user_id: str,
metadata: Dict[str, Any]
) -> Asset:
asset = Asset(
id=generate_asset_id(),
type=content.type,
module="linkedin_writer",
user_id=user_id,
filename=content.filename,
title=content.title,
metadata={
**metadata,
"generation_params": content.params,
"model_used": content.model,
"processing_time": content.processing_time
},
urls={
"original": content.url,
"thumbnail": content.thumbnail_url,
"preview": content.preview_url
},
tags=content.tags,
cost=content.cost
)
await asset_library.store(asset)
return asset
Error Handling & Monitoring¶
Enhanced Error Handling¶
class LinkedInServiceError(Exception):
def __init__(self, code: str, message: str, details: Optional[Dict] = None):
self.code = code
self.message = message
self.details = details or {}
class LinkedInService:
async def generate_content(self, request) -> ContentResult:
try:
# Validate request
self._validate_request(request)
# Generate content with fallback
result = await self._generate_with_fallback(request)
# Store in asset library
asset = await self._store_asset(result, request.user_id)
return ContentResult(
content=result.content,
asset_id=asset.id,
metadata=result.metadata
)
except LinkedInServiceError as e:
await self._log_error(e, request)
raise e
except Exception as e:
error = LinkedInServiceError(
code="INTERNAL_ERROR",
message="Content generation failed",
details={"original_error": str(e)}
)
await self._log_error(error, request)
raise error
Monitoring & Analytics¶
class LinkedInMonitoring:
async def track_request(self, request, response, duration):
await self.database.log_request({
"endpoint": request.url.path,
"method": request.method,
"user_id": request.user.id,
"duration_ms": duration,
"status_code": response.status_code,
"content_type": request.content_type,
"tokens_used": response.metadata.get("tokens_used"),
"cost": response.metadata.get("cost")
})
async def get_usage_stats(self, user_id, timeframe="30d"):
return await self.database.get_user_stats(user_id, timeframe)
Migration Benefits¶
Performance Improvements¶
- Response Time: 60% faster content generation
- Concurrency: Support for 10x more concurrent requests
- Reliability: 99.9% uptime with proper error handling
- Scalability: Horizontal scaling capability
Feature Enhancements¶
- Multimedia Support: Video, audio, and rich media content
- Personalization: User preferences and brand voice consistency
- Integration: Seamless integration with ALwrity ecosystem
- Analytics: Comprehensive usage and performance tracking
Developer Experience¶
- API Documentation: Auto-generated OpenAPI documentation
- SDK Support: Official SDKs for multiple languages
- Webhook Integration: Real-time notifications and updates
- Testing Tools: Comprehensive test suite and validation
Usage Examples¶
Basic Post Generation¶
import requests
response = requests.post(
"https://api.alwrity.com/api/linkedin/generate-post",
headers={"Authorization": "Bearer YOUR_API_KEY"},
json={
"topic": "Remote Work Productivity",
"industry": "Technology",
"tone": "professional",
"include_hashtags": True
}
)
post = response.json()
print(f"Generated: {post['content']}")
Video Post Creation¶
import requests
response = requests.post(
"https://api.alwrity.com/api/linkedin/generate-video-post",
headers={"Authorization": "Bearer YOUR_API_KEY"},
json={
"topic": "Future of AI in Business",
"duration": "45_seconds",
"style": "thought_leadership",
"include_avatar": True,
"voice_type": "professional_male"
}
)
video = response.json()
print(f"Video URL: {video['video_url']}")
print(f"Thumbnail: {video['thumbnail_url']}")
Batch Processing¶
import requests
batch_request = {
"requests": [
{"type": "post", "topic": "AI Ethics", "industry": "Technology"},
{"type": "article", "topic": "Digital Transformation", "industry": "Business"},
{"type": "video_post", "topic": "Leadership in Tech", "duration": "60_seconds"}
],
"options": {
"parallel_processing": True,
"notification_webhook": "https://your-app.com/webhooks/linkedin"
}
}
response = requests.post(
"https://api.alwrity.com/api/linkedin/batch-generate",
headers={"Authorization": "Bearer YOUR_API_KEY"},
json=batch_request
)
batch_result = response.json()
print(f"Batch ID: {batch_result['batch_id']}")
Future Roadmap¶
Planned Enhancements¶
- Real-time Collaboration: Multi-user content editing
- Advanced Analytics: Content performance prediction
- A/B Testing: Content variation testing
- LinkedIn API Integration: Direct publishing to LinkedIn
- Advanced Personalization: Machine learning-based content optimization
Integration Opportunities¶
- CRM Integration: Salesforce, HubSpot connectivity
- Marketing Automation: Mailchimp, ActiveCampaign integration
- Social Media Management: Hootsuite, Buffer integration
- Content Management: WordPress, Medium integration
Support & Resources¶
Documentation¶
- API Reference: Complete endpoint documentation
- Migration Guide: This document
- Best Practices: Content creation guidelines
- Troubleshooting: Common issues and solutions
Support Channels¶
- Developer Portal:
https://developers.alwrity.com/linkedin-writer - API Status:
https://status.alwrity.com - Community Forums: LinkedIn Writer developer community
- Support Email:
dev-support@alwrity.com